COBOUNDARY " THEOREM FOR SUMS OF RANDOMVARIABLES TAKING THEIR VALUES IN A BANACHSPACERichard

نویسندگان

  • Richard C. Bradley
  • Klaus Schmidt
چکیده

Klaus Schmidt proved that if a strictly stationary sequence of (say) real-valued random variables is such that the family of distributions of its partial sums is tight, then that sequence is a \coboundary". Here Schmidt's result is extended to some (not necessarily stationary) sequences of random variables taking their values in a separable real Banach space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A “coboundary” Theorem for Sums of Random Variables Taking Their Values in a Banach Space

For a given metric space (S, d), let us use the term “standard σ-field” to denote the σ-field S of subsets of S generated by the open balls (in the metric d). A function f : S×S×S× . . .→ S is “measurable” (with respect to S) if for every set A ∈ S one has that f−1(A) is a member of S×S×S×. . . , the product σ-field on S × S × S × . . . . Suppose B is a separable real Banach space. Suppose (Ω,F...

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables

In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

A Generalization of Poisson Convergence to “Gibbs Convergence” with Applications to Statistical Mechanics

We prove a theorem which generalizes Poisson convergence for sums of independent random variables taking the values 0 and 1 to a type of “Gibbs convergence” for strongly correlated random variables. The theorem is then used to develop a lattice-to-continuum theory for statistical mechanics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997